
Thermal gauge potentials and coherent thermally assisted tunnelling

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys.: Condens. Matter 1 501

(http://iopscience.iop.org/0953-8984/1/3/001)

Download details:

IP Address: 171.66.16.90

The article was downloaded on 10/05/2010 at 16:58

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/1/3
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter l(1989) 501-508. Printed in the UK 

Thermal gauge potentials and coherent thermally 
assisted tunnelling 

S Clough 
Department of Physics, University of Nottingham, University Park, Nottingham 
NG7 2RD. UK 

Received 16 May 1988, in final form 29 July 1988 

Abstract. It iscommonlyassumed that thermal excitationof avibrationleads toanincoherent 
mixture of vibrational states. We show, using the excitation of a violin string by a steadily 
driven bow as a model, that the new gauge theory of driven dynamical systems implies 
coherence. This means that the thermally excited state is a pure one in a representation that 
moves with the vibrations. This gives rise to a new and very simple description of thermally 
assisted tunnelling through the barriers of a periodic potential. It explains why there is only 
a single transport process, not one for each vibrational level. The real and imaginary 
parts correspond to the free bidirectional tunnelling frequency and to the thermally driven 
monodirectional tunnelling rate. A simple statistical mechanical assumption enables both 
of these to be easily obtained as weighted averages of overlap integrals of vibrational states 
located in adjacent potential wells. As the coherent tunnelling frequency declines with 
increasing temperature and the thermally driven rate rapidly increases, a smooth transition 
occurs from the quantum tunnelling regime to a quasi-classical thermal ‘hopping’ regime. 
The predictions are in good agreement with a large body of experimental data on quantum 
tunnelling and thermally activated rotations of methyl groups. The general assumptions are 
expected to apply to some degree to other transport phenomena. 

1. Introduction 

A harmonic oscillator like a pendulum can be excited, or sustained in an average state 
of excitation against frictional damping, by a series of small impulses. At one extreme 
(incoherence) the impulses occur at random times and have random directions; in the 
coherent case they are synchronised with the vibration and all have the same direction. 
The excitation of aviolin string by asteadily drawn bow is a model for coherent excitation. 
A simple description of this process is that the string and bow only stick momentarily 
when they happen to be moving at the same speed. As a result an impulse is transmitted 
in each cycle to sustain the oscillations. The mechanism is similar to an electronic 
oscillator drawing power from a steady voltage. 

A particle moving on a sinusoidal surface, and excited from rest by incoherent 
impulses, may eventually acquire enough energy to pass over the crests of the surface. 
Its direction of motion though is predictable only if the full history of the impulses is 
known. A particle experiencing coherent impulses will cross a crest while moving in 
the direction of the impulses. The usual assumptions of incoherent time-dependent 
perturbation theory correspond to the first case and lead to a description of a thermally 
excited quantum oscillator in terms of an incoherent mixture of ground and excited 
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states. This implies that all observable effects of phase coherence between different 
vibrational states are lost in the process of excitation. This is one extreme assumption, 
the other being that perfect coherence is retained. This paper is about this second 
assumption. The nature of thermal excitation is most clearly revealed by the way the 
wavefunction penetrates a potential barrier between two potential wells, so we shall go 
on to explore this property. The key assumption we make here is that there is also 
perfect coherence between excitations in neighbour wells. For coherent excitation and 
coherence between adjacent wells, the process of barrier penetration is extremely 
simple. All aspects of the process may be predicted from simple statistically weighted 
averages of overlap integrals of the vibrational states on the two sides of the barrier, the 
vibrational states merely providing the basis for our description of the coherently excited 
state. 

The main motivation for this paper is to explain a large body of experimental 
data (Clough et a1 1982, Clough and McDonald 1982) on the quantum tunnelling and 
thermally activated rotation rates of methyl groups. The outstanding feature of these 
data is their extreme simplicity and the ease with which they may all be described by a 
universal expression involving no adjustable parameters (Clough et a1 1981). The clear 
message of the data is that thermally assisted tunnelling is a very simple process depen- 
dent only on the temperature and not on the phonon spectrum of the host lattice. The 
only problem has been that it apparently required coherent thermal excitation which is 
quite incompatible with the usual perturbation theory descriptions. 

There is a simple reason why coherent excitation with all its attendant simplicity has 
been largely ignored. The mechanism by which the coherent excitation is generated and 
sustained has been missing from quantum descriptions of dynamical processes. This 
missing element is a gauge potential which represents the coherent motion of the thermal 
environment (Clough et a1 1984, Wilczek and Zee 1984, Clough 1985). The introduction 
of the gauge potential represents a substantial revolution in the quantum mechanics of 
the solid state. The startling fact is that most time integrals in most quantum mechanical 
theories are incorrect because of the omission of what has become known as the topo- 
logical phase. Many aspects of condensed matter physics will therefore need 
reassessment. The new approach recognises that all experiments involve driven systems 
rather than freely evolving isolated ones, and it leads to a switch from dealing with a 
single Hamiltonian to dealing with a sequence of Hamiltonians. This revolution was 
launched by Berry (1984) who proved that a quantum system slowly (adiabatically) 
driven around a loop in parameter space acquires an extra quantum phase related to the 
topology of the trajectory. The adiabatic restriction was removed subsequently (Berry 
1987, Aharonov and Anandan 1987). The appearance of a phase angle connected with 
a system following a circuital path recalls the well known Aharonov-Bohm effect 
(Aharonov and Bohm 19.59) and, generally, the structure of gauge theory in electro- 
magnetism and particle physics. It was by pursuing this line of thought that Mead 
(1980) had introduced the vector potential in the context of the Born-Oppenheimer 
approximation and Wilczek and Zee (1984), following Berry, found the (generally non- 
Abelian) gauge structure implicit in the dynamics of all driven systems. Since isolated 
systems are only an abstraction, gauge potentials are ubiquitous in dynamical problems. 

A completely different line of reasoning led to the same conclusion. The behaviour 
of isolated quantum systems is incompatible with the assumptions of classical mechanics 
(Clough and Poldy 1972, Clough 1972), and thus with the correspondence principle. 
The gauge potential is just what is required to put this matter right (Clough et a1 1984, 
Clough 198.5). A simple example of this is a toy elastic-powered aeroplane. A rotation 
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of the propeller through 360 degrees is accompanied by a twist in the elastic, so it is not 
a symmetry operation. On the other hand it is commonly assumed that the rotation 
through 360 degrees of a methyl group in a crystal is a symmetry operation, as if nothing 
corresponded to the elastic. The effect of the twist in the elastic on the propeller 
corresponds to a change in the gauge potential. Leaving it out leads to the loss of its 
coherent effects and, perhaps worse still, introduces a false rotational symmetry. 

2. The origin of the thermal gauge potential 

In describing methyl rotation, most authors require the one-dimensional rotational 
Hamiltonian to exhibit threefold symmetry and time-reversal symmetry and its 
wavefunctions to satisfy 2n periodicity and to be perfectly correlated with the nuclear 
spin states. All this follows if the one-dimensional coordinate is the pure rotation 
coordinate of the methyl group. We depart from this. Our coordinate g, is never pure 
rotation, but is always slightly admixed with lattice displacements. Our prime concern 
is to decompose the total system into a one-dimensional subsystem and a random heat 
bath. That this is possible we regard as an empirical fact, but it is unreasonable to suppose 
that one can simultaneously choose the single coordinate arbitrarily. Either the projected 
coordinate is allowed to float and the heat bath is random, or the coordinate is fixed 
and the heat bath is non-random. The important interactions between system and 
environment are described in one case by the way the coordinate varies and in the other 
by correlations in the heat bath. Since we choose the former way, the Hamiltonian is not 
subject to the symmetry restrictions that apply in the latter case. 

Generally we assert that any decomposition into a subsystem and random heat bath 
leaves the embedded subsystem space curved into the larger space of the total system. 
The variation of the curvature is responsible for the force (or torque) on the subsystem, 
just as the variation of the curvature of spacetime is responsible for gravitational force. 
It is convenient to treat the curvature as a local coordinate (or set of coordinates) whose 
variation with g, then becomes a gauge potential A (or potentials). The operator d / d q  
has to be replaced by the covariant derivative (d /dg ,  + VI), thus introducing the gauge 
potential in the usual way. Since we deal with a one-dimensional rotor, a single one- 
dimensional gauge potential is sufficient. 

It is important to emphasise that the Hamiltonian containing a vector potential does 
not describe an isolated subsystem, but one driven by the heat bath, so it contains some 
information about the driven trajectory in the form of the history of the gauge potential. 
This information is transmitted to the evolving wavefunction. From our point of view, 
the important information is whether the methyl group is being driven in a clockwise or 
anticlockwise sense, and the strength of the driving effect. We may anticipate that the 
latter depends on the temperature. The former can be regarded as a kind of spontaneous 
symmetry breaking because the excited lattice states fall into two classes according to 
the direction in which they drive the methyl group. 

A considerable simplification is achieved by considering only the trajectory of the 
subsystem itself in its own projective Hilbert space. This is the point of view adopted by 
Aharonov and Anandan (1987) and it is the simplest possible representation of the 
observable effects. By considering only the lowest two levels of a harmonic oscillator, 
we reduce the appropriate space to a simple sphere. The ground state and the first excited 
vibrational states are represented by two points at opposite ends of a diameter, and any 
mixed state can be represented by a point elsewhere on the sphere. Conventionally, a 
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thermal state would be represented by an axially symmetric density function. The axial 
symmetry means that there is no preference for right- or left-handed motion. This is the 
picture that emerges from ordinary perturbation theory, and it comes from neglecting 
the non-random character of the heat bath. It is consequently incorrect. Since we have 
transferred the non-randomness to the gauge potential, we can trace the effect on the 
trajectory, and find a strong departure from axial symmetry. This then has important 
consequences for tunnelling rotation. 

3. Coherent excitation 

To describe coherent excitation we introduce a time-dependent gauge potential A into 
the harmonic oscillator Hamiltonian: 

X = (in d / d x  +A)*  + kx2 (1) 
and describe the state function in terms of the eigenfunctions lu,) of the A = 0 
Hamiltonian. We refer to these functions as the vibrational states. For simplicity we 
consider only the lowest two vibrational states, separated by the energy h o  where o is 
the harmonic angular frequency. The term in (1) that is linear in A couples these two 
states, the matrix elements being imaginary. Recalling the model of the violin string, we 
assume that A consists of a series of impulses synchronised with the oscillation. Picking 
out the resonant (or nearly resonant to allow for thermal fluctuations) Fourier com- 
ponent of A ,  we can make use of an analogy with the motion of a spin in a static magnetic 
field proportional to w along the z axis and a nearly resonant magnetic field along they 
axis. For the oscillator the x and y axes correspond to displacement and momentum. 
The field along y may be decomposed in the usual way into two components rotating 
about z in opposite directions, and the one rotating counter to the motion of the oscillator 
discarded as non-resonant. A transformation into a rotating frame now removes the 
time dependence of the field perpendicular to z and reduces the effective z field to a 
value dependent on the small departure from resonance. It also removes the relative 
time dependence of lug) and l u l ) .  The fields can be combined into an effective field tilted 
at an angle 8 to z and the stationary states in the rotating frame have the form 

( 2 )  

As 8 varies, the state Iv0) follows a trajectory from luo) along a particular plane in the 
projective Hilbert space. If iuo) and lul) are visualised as the south and north poles, then 
I U) lies on a particular longitude and the direction in which it moves depends on the sign 
of A .  We assume the mean excitation is given by statistical mechanics: 

i u0 )  = cos e / u o )  + i sin 81ul) 1u l )  = sin 81uo) - i cos 

(sin2 8)/(cos2 8)  = exp(-ho/kT).  ( 3 )  

A matrix can be constructed from the coefficients of I U,,): 

1. (4) 
COS* e i sin 6 cos 8 

-i sin 8 cos 8 sin2 e .=[ 
An ensemble average of this matrix gives the populations of the vibrational states on the 
diagonal, as is clear from (3). The off-diagonal elements only survive the averaging 
procedure, though, if we use a particular representation (or rotating frame) for each 
oscillator, dependent on the particular history of the gauge potential at that site. Unless 
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we can compare two or more oscillators that experience similar excitation histories, we 
can expect the off-diagonal elements to have no effect on experiments conducted on 
macroscopic samples, and this is why they are usually ignored. The barrier penetration 
problem, though, may depend on a comparison of this kind. In this case therefore it is 
of cardinal importance to retain these off-diagonal terms. 

4. Thermally assisted rotation of methyl groups 

The usual Hamiltonian used to discuss the hindered rotation of methyl groups is 

x = - (h”2Z)a’/aq2 - v c o s 3 q .  ( 5 )  
This can be regarded as approximately equivalent to three harmonic oscillators in 
potential wells centred at cp = 0, q = 2n/3, cp = 4n/3. The wavefunctions in adjacent 
potential wells overlap beneath the potential barriers and so give rise to tunnelling 
rotation at a rate governed by overlap integrals, which may be obtained numerically. 
For simplicity we again limit the discussion to only two vibrational states in each potential 
well. There are therefore four overlapintegrals Aoo, A,, , Aol, and Ala, arisingrespectively 
from the overlap of two ground states, two excited states, and one of each. Because 
the excited vibrational state is an odd function, Aoo and Al l  have opposite signs and 

We assume that the three harmonic oscillator states localised in the three wells are 
identically excited, having experienced identical gauge potentials. The overlap integral 
connecting states in potential wells m and n is 

A01 = -Ala. 

W,, = Aoocos’8 + A l l  sin28 -+ iAol sin20 (6) 

w,, = w;m. (7) 
The effect of the overlap is to lift the threefold degeneracy. The eigenvalues and 
eigenfunctions are easily found by diagonalisation of the matrix 

w12 w13 0 exp(ia) exp( -icu) 

= A m  exp(-ia) 0 exp(ia) ] (8) 
exp(ia) exp(-ia) 0 

(9) 

(10) 

(11) 

E:: ow,, 71 [ 
A,,, = [(A,, cos28 + All  sin’ + (Aol ~ i n 2 0 ) ~ ] ’ ~ ’  

sin a = (Aol sin 28)/Am. 

( x / A ~ ) ~  - 3(x/Am) - 2 COS 3a = 0 

The secular equation 

yields the eigenvalues 2Am cos a,  2Am cos(a + 2n/3), 2Am cos(@ + 4n/3). The eigen- 
functions have the form of Bloch waves with wavenumbers 0 ,2x/3 and -2n/3. 

At low temperature when 8 is small, W,, is real and a is small. Because Aoo and 
All have opposite signs, the real part of the overlap W,, decreases with increasing 
temperature, while the imaginary part increases steadily in magnitude. This progressive 
change makes an important change in the character of the rotational motion. On 
superimposing the three Bloch wave eigenfunctions, a wavepacket that is initially located 
in one of the three potential wells is set up. The subsequent evolution is governed by the 
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eigenvalues, whose differences therefore characterise the motion. At low temperature 
the eigenvalues are 2A,, -A,, -Am.  The wavepacket evolves bidirectionally, leaving 
the potential well in which it was initially localised and appearing distributed sym- 
metrically in the other two wells, before returning to the original well. This is an 
oscillatory motion with a frequency related to the splitting 3Am, which is approximately 
3AO0 at low temperature. 

At high temperature a approaches n/2 in magnitude and the eigenvalues are 0, 
3l/’A, and -31’2A,. In this case the wavepacket evolves in a monodirectional way, 
appearing successively in wells 1, 2, 3, 1, etc, and therefore the motion corresponds to 
the usual meaning of rotation. The direction of the rotation depends on the sign of a 
and therefore on the sign of the gauge potential that created the thermal excitation. This 
is driven or thermally assisted tunnelling rotation, and the origin of its monodirectional 
character is in the breaking of the time-reversal symmetry by the gauge potential term. 
At  intermediate temperatures, the bidirectional free tunnelling and the monodirectional 
rotation coexist, with the frequency of the former declining as the rate of the latter 
increases. 

The temperature-dependent tunnel frequency is simply given by the real part of A,. 
From (3) and (9) this is 

A, cos a = [Aoo + A l l  exp(-)io/kT)]/[l + exp(-ho/kT)]. (12) 
This thermal average of the splittings of different vibrational states was proposed long 
ago by Allen (1974) to account for the observed reduction in the tunnel frequency of 
methyl groups with rising temperature (Clough and Hill 1974). It has been frequently 
used (Johnson and Mottley 1973, Punkkinen et a1 1975, Prager et a1 1977, Muller- 
Warmuth et a1 1978) and has proved remarkably reliable. The problem has been to 
understand why it works, starting from an incoherent mixture of vibrational states. 
Attempts to account for its success in terms of rapid transitions between the vibrational 
states (Allen 1974) were not successful, failing to explain simultaneously the observed 
broadening of the tunnel spectrum. It was indeed appreciated quite early that the 
expression (12) required a coherent mixture of vibrational states (Johnson and Mottley 
1973) but the mechanism that could maintain this coherence was not apparent. The 
gauge potential therefore resolves this old problem. 

The thermally activated rotation rate corresponds to the imaginary part of A,. 
Generalised to include higher excited vibrational levels, it is 

Since it grows with increasing temperature, it first acts to damp the coherent tunnel 
frequency and then swamps it at higher temperatures. In this case a realistic description 
must involve more than the first two vibrational states. The rate can be calculated from 
the model as a weighted average of overlap integrals without the use of any adjustable 
parameters. A procedure of this kind was used by Das (1956,1957) and by Stejskal and 
Gutowsky (1958), but using the diagonal overlaps Ai,i as in (12) rather than as in 
(13). (The overall temperature dependence obtained, though, is not so very different 
from (13)). A more serious problem seemed to be an underlying inconsistency with 
the symmetry constraints of quantum theory (Freed 1965), and this held back the 
development of the theory for several years. Now it is clear that this was a mis- 
apprehension due to the absence of the symmetry-breaking gauge term. The idea that 
the transport rate is a simple thermal average was revived by Clough et a1 (1981) who 



Thermally assisted tunnelling 507 

also demonstrated that it accounted for all of a considerable amount of data collected 
on methyl rotation (Clough et a1 1982, Clough and McDonald 1982, McDonald et 
a1 1986). Similar conclusions were reached by other workers (Montjoie and Muller- 
Warmuth 1985, Montjoie er a1 1988), again on the basis of studies of many different 
compounds. The present discussion shows though that the actual expressions that have 
been used 

need to be modified. They have involved thermal averages of the moduli of the tunnel 
splittings of the vibrational levels calculated from the Hamiltonian ( 5 ) .  Two defects of 
(14) are remedied in (13). In using (14) it was necessary to omit the i = 0 term in the 
numerator because the thermally assisted transport rate must approach 0 as T- 0, and 
the reason for using the moduli of A,, was unclear. In (13) no terms are omitted and all 
have the same sign selected by the direction associated with the gauge potential. 

When the vibrational states in adjacent potential wells are assumed to be incoherent 
(see, for example, Holstein (1959) on the diffusion of small polarons) the contribution 
to the transport rate is found to depend on the square of the overlap integral 
divided by a denominator which is a measure of the incoherence of the vibrational states. 
The simplicity of coherent thermally assisted transport derives from the fact that no 
mismatch occurs. There are consequently no adjustable parameters, making the pre- 
dictions very testable and the experiments unambiguous. There is only one rate constant, 
not one for each vibrational state. Now the problem of the false symmetry constraints is 
resolved, a simple picture emerges for the thermally assisted transport and in particular 
for the transition from free quantum tunnelling to thermally driven rotation as the 
magnitude of the fluctuating gauge potential rises with increasing temperature. 
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